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FUNCTIONS, LIMITS AND DERIVATIVES FOR FIRST YEAR CALCULUS STUDENTS

WORLD’S #1 ACADEMIC OUTLINE

DEFINITIONS

« FUNCTIONS.A functionis a correspondence that
assigns one value (output) to each member of a given
set. The given set of inputs is called the domain. The
set of outputs is called the range. One-variable cal-
culus deals with real-valued functions whose domain
is a set of real numbers. If a domain is not specified,
it is assumed to include all inputs for which there is a
real number output.

« NOTATION. If a function is named f, then f(x)
denotes its value at x, or “f evaluate atx” 1fa
function gives a quantity yin terms of a variable quan-
tity x, then x is called the independent variable and
v the dependent variable. Given a function by an
equation such as y = x2 one may think of y as a short-
hand for the function’s expression. The notation x| >
x2 (“x maps to x2”) is another way to refer to the
function. The expression f(x) for a function at an ar-
bitrary input x often stands in for the function itself.

NEW FROM OLD

defined by: (f+2)x) =f(x) +g(x),

(@x) =ftx)g x),
e)x) = [/ g ).

excluded for the quotient.

domain [-1,1].

® ARITHMETIC. The scalar multiple of a function /
by a constant c is given by (cfj(x) =c#(x). The sum f+ g,
product fg, and quotient f/g of functions fand g are

In each case, the domain of the new function is the inter-
section of the domains of fand g, with the zeros of g

. COMPOSITION. Iff'and g are functions, “fcomposed

with g” is the function fo g given by (f o g)(x) fgx)
with domain (strictly speaking) the set of x in the do-
main of g for which g(x) is in the domain of f. E.g.,

_x2 is the square root composed with x | > 1-x2, with

o TRANSLATIONS. The graph of x | >(x-a) is the graph

ELEMENTARY
ALGEBRAIC FUNCTIONS

® CONSTANT AND IDENTITY.
A constant function has only one output:
o _Jn=c.
The identity function is
x| >x, orflx)=x.
—x if x <0
* ABSOLUTE VALUE. [*|=7 ..

The above is an example of a piecewise definition.
For any x, V“‘xz =|x|.

® LINEAR FUNCTIONS. For a linear function,
the difference of two outputs is proportional to the
difference of inputs. The proportionality constant,
i.e., the ratio of output difference to input difference
= y 2 -y
XTH
is called the slope. The slope is also the change in
the function per unit increase in the independent
variable. The linear function

VWINS SOV

of ftranslated by @ units to the right; e.g., (a, f(0)) would
be on the gra gh The graph of x| >f(x) + bis the graph of
/ translated b units upward.

« GRAPHS. The graph of a function fis the set of
ordered pairs (x, f(x)), presented visually with a Cartesian
coordinate system. The vertical line test states thata
curve is the graph of a function if every vertical line
meets the curve at most once. An equation y=f(x)
often refers to the set of points (x,y) satisfying the
equation, in this case the graph of the function /. The
zeros of a function are the inputs x for which /(x)=0,
and they give the x-intercepts of the graph.

+« EVEN AND ODD. A functionf is

even if f(-x) =1 (x), e.g., x3;

odd if /' (-x) = -f (x), e.g., x*. Most are neither.

f(x)=mx+b

has slope m and y-intercept f{0) = b, the graph
being a straight line. The slope has units the ratio
of the units of the axes. (E.g., in a distance vs.
time graph, slopes are velocities.) The linear func-
tion with value y at x; and slope m is
S (x) =ygtm (x-x).

® QUADRATICS. These have the form

f(x)=ax2tbxtc (a#0).
The normal form is f{x) = a(x-hp +k.
One has h =-b/(2a) and k= f(h). The graph is a
parabola with vertex (/4,k), opening up or down
accordingly asa > 0 ora <0, and symmetric about
the vertical line through vertex. A quadratic has
two, one, or no zeros accordingly as the discrimi-
nant b2- 4ac is positive, zero, or negative. Zeros
are given by the quadratic formula

Translations
= f (c-a)+b
P y=f(x-a)

(0,p)
.

|

e INVERSES. An inverse of a functionf'is a function g
such that g(f{x)) = x for all x in the domain of f.
A function f'has an inverse if and only if it is one-to-one:
for each of its values y there is only one corresponding
input; or, f(x)=y has only one solution; or, any horizon-
tal line meets the graph of fat most once. E.g., x3 is one-
to-one, x2 is not. Strictly increasing or decreasrng func-
tions are one-to-one.
There can be only one inverse defined on the range of f,
denoted 1. For any y in the range of

g ff(y) is theyrythat solves;g’(x) [
If the axes have the same scale, the graph of f1is the
reflection of the graph offacross the line y =x.

e IMPLICIT FUNCTIONS. A relation F(x,y) =c often
admits y as a function of x, in one or more ways. E.g., x>+
2 =4 admits y = 4-x2. Such functions are said to
be implicitly defined by the relation. Graphically, the
relation gives a curve, and a piece of the curve satisfying
the vertical line test is the graph of an implicit function.
Often, there is no expression for an implicit function in
terms of elementary functions. E.g., x2 2V +y22v =4
admits y = f(x) with f(0) = 2 and f(2) 0, but there isno
ormula for f(x).

(" NUMBERS )

(< RATIONAL NUMBERS. A rational number is a)
ratio p/q of integers p and g, with g # 0. There are
infinitely many ways to represent a given rational
number, but there is a unique ‘lowest-terms’
representative. The set of all rational numbers forms a
closed system under the usual arithmetic operations.
« REAL NUMBERS. In this chart, R denotes the set
of real numbers. Real numbers may be thought of as the
numbers representable by infinite decimal expansions.
Rational numbers terminate in all zeros or have a
repeating segment of digits. Real numbers that are not
rational are called irrational. E.g., m, the ratio of
circumference to diameter of a circle, is irrational; it
may be approximated by rational numbers, e.g., 22/7
and 3.14
. MACHINE NUMBERS. A calculator or computer
represents real numbers approximately using a fixed
number of digits, usually getween 8 and 16. Machine
calculations are therefore usually not exact. This can
cause anomalies in plots. The precision of a numerical
result is the number of correct digits. (Count digits
after appropriate rounding: 2.512 for 2.4833 has two
correct digits.) The accuracy refers to the number of
correct digits after the decimal point.
« INTERVALS. If a < b, the open interval (a,b) is the
set of real numbers x such that a < x <b. The closed
interval [a,b] is the set of x such thata <x < 5. The
notation (- e, a) denotes the ‘half-line’ consisting of all
real numbers x such that x< a (or - °<x< a). Likewise,
there are intervals of the form (- e°,a], (a-°°), and [a, =).
The symbol ° is not to be thought of as a number,
just a convenient symbol in these and other notations.
& The whole real line is an interval, R= (- =, ). ﬂ

and are graphically located symmetrically on either
side of the vertex.

o POLYNOMIALS. These have the form

p(x)=ax" +bx"!l+ -+ dx+ e
Assuming a # 0, this has degree n, leading coeffi-
cient ¢, and constant term e =p (0). A polynomial
of degree n has at most n zeros. 1 X, is a zero of
Px), then x - x; is a factor of p(x):

P(0) = (x-x9) ()

for some degree n-1 polynomial g(x). A polynomial
graph is smooth and goes to + e when x| is large.
® RATIONAL FUNCTIONS. These have the form

fay=28

q(x)

where p(x) and g(x) are polynomials. The domain
excludes the zeros of ¢. The zeros of fare the zeros
of p that are not zeros of ¢. The graph of a rational
function may have vertical asymptotes and remov-
able discontinuities, and is like that of some poly-
nomial (perhaps constant) when [x| is large.

enth ROOTS. These have the form y —xn=a/x

for some integer n>1. If n is even, the domain is
[0, %) and y is the unique nonnegative number such
that y” = x. If n is odd, the domain is R and y is the
unique real number such that y" = x. An nth root
function is always increasing, the graph being ver-
tical at the origin.

o ALGEBRAIC VS. TRANSCENDENTAL. An
algebraic function y = f (x) is one that satisfies a
two-variable polynomial equation P(x,))=0. The
functlons above are algebraic. E.g., y =|x| satisfies
¥ -32=0. Sums, fproducts, quotients, powers, and
roots of algebraic functions are algebraic. Functions
that are not algebraic (e.g., exponentials, logarithms,
and trig functions) are called transcendental.

® RATIONAL POWERS. These have the form
@) = =(emit =(eiym

where it is assumed m and n are integers, n >0, and |m|/n
is in lowest terms. If m <0 thenx”=1/x/"l. The domain of
x™n is the same as that of the nth root function, exclud-
ing 0 if m < 0. For x > 0, as p decreases in absolute
value, graphs of y=x” move toward the liney = x°=1; as
pincreases in absolute value, graphs of y = x” move away
from the line y =1 and toward the line x= 1.

Rational Powers
X 1

E\IOTE TO STUDENT: Due to its condensed format, use )
this Quick Study® reference chart as a Calculus guide,

but not as a replacement for assigned class work.
\ © 2001 BarCharts, Inc. Boca Raton, FL )

6 8546141205208

“Functions” continued on next page...



EXPONENTIALS &
LOGARITHMS

The domain is Rand the range is (0, ). The y - intercept is
a%=1. If a < 1 the function is decreasing; if a> 1 it is in-
creasing.xlt changes by the factor a’ over any interval of
length Ax. Exponentials turn addition into multiplication:
a’=1 a*V=aa
ay = a*lay
o Logarithms. The logarithm with base « is the in-
verse of the base a exponential:
log ,x = “the power of a that yieldsx”.
Equivalently, x = al°ga* or logay=y.
The domain of log,, is (0,°°) and the range is R. If a >1 then
log ;v is negative %or 0 <x <1, positive for x>1, and always
increasing. The common logarithm is log,,. Examples:
log ,a=1 log,32=35, log((1/10) = -1
Logarithms turn multiplication into addition:
log,1=0 log xy=logyx+log,y logx"=mlog,x
log , (x/y) = log ,x - log,y log,(I/x) = -log,x
The third identity holds for any real number m. For a
change of base, one has log x
= . = —d
logbx —logax logba “Tog'b

o Natural exponential and logarithm. The natural ex-

ponential function is the pure exponential whose tan-

gent line at the point (0,1) on its graph has slope 1. Its

base is an irrational number
e = lim (1 +r17)" =2718.

The natural logarithm is In =log,, the inverse to x | >e~
Inx =y meansx=e.

There are identities

Inex=x, ey =x, Ine=1,
and In has the properties of a logarithm.
E.%., In(1/x) = -In x. Special values are:
n1=0, In2=0.6931, Inl0=2.303.
Any exponential can be written a* = e(nax,

Any logarithm can be written log x = '}'E'z-.

e General exponential functions. These have the form

(x) = Pya* and have the property that the ratio of two

outputs (fepends only on the difference of inputs. The ra-

tio of outputs for a unit change in input is the basea. The
y -intercept is f{0) = Py.

0

® Exponential growth. A quantity P (e.g., invested
money) that increases by a factor a =er > 1 over each
unit of time is described by
P=PFya'=Pye".
Over an interval 4t the factorisa”. E.g.,if Pincreases
4% each half year, then a!/,=1.04, and
P=P(1.04)21 = pe0078¢ (tin yrs).
"l;lhe doublin tiglle D is the time interval over which
the quantity doubles: _In2 _In2
ab=e D=2, D=1ha =7
If the doubling time is D, then P= P, 21D,
® Continuous compounding at the annual percent-
age rate  x 100% yields the annual growth factor
a= }Tignm(1+ﬁ)" =e.
® Exponential decay. A quantity Q (e.g., of radioactive
material) that decreases to a proportion b=e* <1 over
each unit of time is described by
0=00b'=QqeH.
Over an interval 2 the proportion is b*%. E.g., if O
decreases 10% every 12 hours, then 5!2=0.90, and
=0,(0.90)"12 = Qe ~008% (¢ in hrs).
The halglife il is the time intgrval over which the quan-
tity decreases by the factor one-half:
H— kH =1 _In2 _In2
bi=e™=g H=h ="
If the half-life is H, then Q = QO (1/2)7/H.
o Irrational powers These may be defined by
f)=x =erinx (x>0).
¢ Hyperbolic functions.The hyperbolic cosine is
coshx =€2€" Jt has domain R, range [1,9), and is even.
On the restricted domain [0, =), it has inverse
arccoshx =cosh~lx =In (x ++x2—1)

X _,7X
The hyperbolic sine is sinhx =S¢
It has domain R, range R, and is odd.
Always strictly increasing, it has inverse

arcsinhx =sinh~lx =1n(x ++x2 +1)

The basic identity is cosh2x - sinh2x= 1.

CuickStud VA

TRIGONOMETRIC
FUNCTIONS

® Radians. The radian measure of an angle 0 is the ratio
oflength s to radius r of a corresponding circular arc: 6= i—
27 radians =360 °

Radian Measure

r A 1°= %radians
In calculus, it is normally
assumed (and necessary for
‘ standard derivative formulas)
that arguments to trig functions
are in radians.

o Cosine, sine, tangent. Consider a real number 7 as the
radian measure of an angle: the distance measured
counter-clockwise along the circumference of the unit
circle from the point (1,0) to a terminal point (x,y). Then

cost=ux;, sint=y;

) Cosine and Sine
tant = st _y

“cost  x° (X, y)
Cosine and sine have domain sin 7 t
R and range [-1,1]. The do-

[l LIMITS ]

4 DEFINITIONS )

main of the tangent excludes
+ 1277-', 132 7, .., and its
range is R. The cosine is even,

the sine and tangent are odd.

e Secant, cosecant, cotangent.
sec t =L csct==—; cot t=1—=w
cost’ sint’ tant sint
® Special values.
t0 N
cost 1 B, 2
sint 0 1, ‘/22
tant 0 B, 1 w 0
o Identities.
sin? 1+ cos2 =1 tan? 1+ 1 = sec¥
sin(a +b) =sina cos b + cos a sin b
cos(a +b)=cos a cos b - sin a sin b
Other identities are obtained from the above. E.g.,
sin(#-T/2) = - cos t
cos(2 1) =cos?t - sit t=1-2 sin? ¢
_ tanag +tanb
tan(a +b) = I—tana tanb
For the last, divide sum identities by cos a cos b.

o Amplitudes, periods, & phases. If
f(t)=A sin (0t +¢) + k

with 4> 0, @ >0, and -T<g < 7 then

the amplitude is 4, the average valueis £,

the period is 2z - the frequency lperiod is a)2n_ s
the angular frequency is @, and

the phase shift (relative to Asin o¢) is ¢.

o Inverse trig functions.

The arccosine is inverse to cosine on [0,7]:

arccos x = “angle in [0,7] whose cosine is x”
It has domain [-1,1] and range [0,7].

arccos(‘/gz ) = ”6 R arccos(_”s2 5 ) :3”4

The arcsine is inverse to sine on : [-n/z,n/z]
arcsin x = “angle in [_TI:/Z’TII/2] whose sine isx.”
It has domain [-1,1], range [-Tc/z,n/z],and is odd.
The arctangent is inverse to tangent on (—”2 ,”2> :
arctan x = “angle in (—”2,”2) with tangent x.”
It has domain R, range (—”2,”2), and is odd.

arctan \3 =7, arctan(—1) =7

3>
The notation cos'x for arccos x is not to be confused
with 1/cos x; likewise sin"!x and tan-1x.

Arctangent

1
y = tan" (x)

—n
2 =il

(o Limit. Intuitively, the limit of f(x) as x approaches)

is the number that f(x) gets close to when x gets
close to a. Precisely, a number L is the limit, written

liin f(x)=L or f(x) =L as x —a

X a
if every € > 0 admits a 8> 0 such that

| fx)—L|<€& when 0 <|x—a| <8.

It is assumed that f(x) is defined for all x in some open
interval containing a, except perhaps x =a. If a limit

exists, there is only one. The limit statement says noth-
ing whatever about the value of fat x = a.

® Zooming formulation. If the plot range for f'is held
fixed with L in the middle, and the plot domain is nar-
rowed through intervals centered at x = g, the graph of
f'eventually lies completely within the fixed plot range,
except perhaps at x = a. (Compare with Zooming For-
mulation under Continuity, next page.)
® One-sided limits.The left-hand limit is equal to L, written
lim_ f)=L or fa)=L,

if every € > 0 admits a 8 > 0 such that

| fo)—L|<€ when a—-8<x<a.
The right-hand limit is defined similarly, the last con-
dition being a < x<a+ &. E.g.,

Xlig)uarctan (lx) = ”2.

A limit exists if and only if the left and right-hand lim-
its exist and are equal.
o Infinite limits. One writes Jim /(*) =°°

ifevery Y> 0 admitsa d >0 such that

f()>Y when 0<Jx—a|<5.
Likewise, there are one-sided limits to oo, and lim-
its to -0 E.g., 1M | )lc_) =—oo,
® Limits at infinity. One writes
lim f(x) =L
if every €> 0 admits an X > 0 such that

NS )
" LIMIT THEOREMS )

| fx)—L| <€ when x>X.

(® Note. The following theorems have counterparts in-)
volving limits to infinity. Also, “for x near a” will
mean “for all x in some open interval containing a,
except perhaps x =a.”

o Arithmetic. A limit of a sum is the sum of the indi-
vidual limits, provided each individual limit exists.
Likewise for a limit of a difference or a product. The
limit of a quotient is the quotient of the individual lim-
its, provided each individual limit exists and the limit
of the denominator is nonzero. If ¢ is a scalar, then

lim ¢ f(x) =c lim f(x).
® Compositions. If lim ¢(x)=I and g(x)#[ for
x near a (or if F is continuous at /), then
lim F(g(x)) = lim F(y)
provided the limit on the right exists. E.g.,
11“1 (x2+Dn = 113} =2
lim sin3 _ lim S0V _;
x>0 Sx Y20y
® Inequalities. If f(x) < M for x near a, then
lim f(x) SMif the limit exists. Likewise if fix) > m.

® Sandwich Theorem. If g(x) <f'(x) < i(x) for x near

a,and Jlim §(0) = lim h(x) =L then lim f(x) =L .

Special case: if | fx) | < A(x) for x near a, then
Xlij)nah(x)zo implies lim, f(x)=0.

E.g., Xlig(l)xsin(lx) =0 (using h(x) =|,x|).

® I’ Hopital’s Rule. (Needs derivatives.) If
i, f() =0 = lim g,
and if /"(x) and g '(x) are defined and g"(x) #0 for x
near a, then )
lim ) = Jim LX)

Higy T )
provided the latter limit exists (or is infinite). The rule

also holds when the limits of fand g are £ oo,
N J
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("  LIMIT FORMULAS )

— /4 . . . N

® Polynomials and rational functions.
If ¢ is a constant, lime =¢.

x—a
If p(x) is a polynomial, }%p(x) =p(a).

Let p(x) and g(x) be polynomials.

If ¢(a) #0, then (L"aqELxx; qELg;

E.g., for integer n>0, lim L —co:

> x—pt xn

XILH(}—% =—co (nodd); .l lipy-—5 = o (neven).

tors of x -a from p(x) and ¢(x). E.g.,
lim x242x =3 _ 1im x+3  _
B-3x+2 T (x-Dx+2)
® Rational functions at infinity.
For integer n >0, lim xn=oco

1i .a.x_hx_” + _1+ =a | n—m
e cxm +dxmTI+ T e lim, ¥

® Arbitrary powers.

lim x "=a” (when a? is defined)
For p>0, Jimx”=co and lim x~"=0.
o Limits for basic derivatives

m m
lim 2= = m=1 (when g™ is defined)

X a X —a
Jim €=1 =1 (a definition of ¢) Jim ©=L=Ina
im sinx _ .ocosx—1 _
Xhln)os.lIxLX_ =1 xhglm = =0

&

If g(a) = 0 and p(a) %0, one-sided limits are & oo,

If g(a) = 0 and p(a) = 0, first cancel all common fac-

Jim_xn=—co(n odd); lim_xn = co(n even); lgmm}]n— =0

xze (a, ¢ non zero)

-/

CONTINUITY

DEFINITIONS

ata if a is in the domain of fand

Jim f(x) =f(a).

taining a, and every € > 0 admits a 0 > 0 such that
| f()=f@|<& when |x=a|<d.

range. This must hold for any such plot range.

fla)y+e

Continuity
Under Zooming

Sfla)

fla)-¢

a-o a a+d

from the left at g if @ 1s in the domain of f and

lim_f(x) = f(@).

in the domain of f and

lim. f(0 = f(@).

at every point in its domain, using one-sided continu-
ity at endpoints of intervals. Caution: textbooks
sometimes refer to some points not in the domain
as points of discontinuity. Intuitively, a function
is continuous on an interval if there are no breaks
in its graph.

[a,b]is uniformly continuous.

o Continuity at a point. A function fis continuous

Explicitly, /* is defined on some open interval con-

® Zooming formulation. If the plot range for fis held
fixed with f(a) in the middle, and the plot domain is
narrowed through intervals centered atx = a, the graph
of feventually lies completely within the fixed plot

® One-sided continuity. A function fis continuous

A function fis continuous from the right at aif ais

o Global continuity. We say a function is continuous
if it is continuous on its domain, meaning continuous

® Uniform continuity. A function fis uniformly
continuous on its domain D if for every € >0
there is a 8 > 0 such that x,y in D and |x-y| < &
imply [f{x) - f(y)|<€ Uniform continuity implies
continuity. A continuous function on a closed interval

DEFINITIONS

® Derivative. The derivative of fat  is the number

fia= fim farh=f@

provided the limit exists, in which case fis said to be
differentiable at a. The derivative of /'is the functionf”.
The derivative is also

r@= i A=
by the limit theorem for compositions applied to

x> Fx—a), with F(h) =L +hi)z_ (@)

® Zooming formulation. If the plot domain for fis nar-

rowed through intervals centered atx = a while the ratio of

the plot range to the plot domain is held fixed, the graph of

| feventually a appears linear (identical to the tangent line
(

atx =a). If f'(a) #0, the zoomed graph appears linear
with no constraint on the plot ranges ( ‘auto-scaling’).

® Notation. The derivative function itself is denoted /
or D(f). If y = f(x), the following usually represent ex-
pressions for the derivative function:

v, oDy w4,

The second is the Liebniz notation. Notations for the
derivative evaluated at x = a are

r. o G| ] o

e Linearization. The linearization, or linear approxi-
mation, of fat «a is the linear function

x - f@) +f' @k —a).
Its graph is the tangent line to the graph of f at the
point (a,f(a)). The derivative thus provides a ‘linear
model’ of the function near x =a.

o Differentials. The differential of fat a is the expression
) - dfla)=f"(@)dx.
Applied to an increment Ay, it becomes f” (a)Ax.
If y = f(x), one writes dy = f"(x)dx.
® Difference quotients. The difference quotient
a+h)—

approximates f”(a) if /4 is small. It is the slope of the

secant line through the points (a,f(a)) and (a+h,fa+h)).
The average of it and the ‘backward quotient’,

fla)—fla—h)
h
is the symmetric quotient

fla+h) —fla—h)

2h
usually a better approximation of f’(a).

THEORY

e Arithmetic. Scalar multiples of a continuous func-
tion are continuous. Sums, differences, products, and

qhuotlents of continuous functions are continuous (on
eir domains).

® Compositions. A composition of continuous func-
tions 1s continuous.

® Elementary functions. Polynomials, rational functions,
root functions, exponentials and logarithms, and trigo-
nometric and inverse trigonometric functions are continuous.

® Intermediate value theorem. Iff is continuous on
the closed interval [a,b], then fachieves every value
between f'(a) and f(b): for every y between f(a) and
f(b) there is at least one x in [a,b] such that f(x) = y.
The zero theorem states that if fis continuous on [a,b]
and f(«) and f(b) have opposite signs, then there is an
x in (a,b) such that f(x) = 0.

e Bisection Method. This a method of finding zeros
based on the zero theorem.
1 With f, a, b as in the zero theorem, the midpoint
x1 = Yy(a+b) is an initial estimate of a zero.
2 Assuming f(x,) is nonzero, there is a new interval
[a.x] or [x,b] on which opposite signs are taken
at the endpoints. It contains a zero, and its mid-
point x, is a new estimate of a zero.
3 Repeat step (2) with the new interval and x,.
4 The nth estimate x, differs from a zero by no more
than (b-a)/2".
® Extreme value theorem. If fis continuous on the
closed interval [ a,b], then f'achieves a minimum and
a maximum on [a,b]: there are ¢ and din [a,b] such that
flo) =f(x) S Ad) for all x in [a,b]. The proofs of this and
the intermediate value theorem use properties of the set
of real numbers not covered in introductory calculus.

INTERPRETATIONS

® Rate of change. The derivative /" (a) is the instanta-
neous rate of change of fwith respect to x at x=a. It
tells how fast fis increasing or decreasing as x increases
through values near x = a. The average rate of change

of foveraninterval [a,x] is xx — —q  -Asxnearsa, these
average rates approach f” (a). The units of the derivative
are the units of f(x) divided by the units of x.
® Tangent line. The derivative f’(a) is the slope of the
tangent line to the graph of fat the point (q, I4’(a)) Itisa
limit of slopes of secant lines passing through that point.
® Linear Approximation. One can approximate val-
ues of f near a according to
f&) = fl@) +f'(@)x -a).

E.g., since a‘;‘\/;=—]—24\/x V62 = \/674"'—\}—2 I (=2) =7875.
The approximation is better the closer x is to @ and the
flatter the graph is near a.
o Differential changes. At a given input, the deriva-
tive is the factor by which small input changes are scaled
to become approximate output changes. The differen-
tial change at @ over an input increment Ax approxi-
mates the output change:

) Sfl@Ax=flatAn - fla. )
The differential change 1s the exact change in the lin-
ear approximation.

Differential Changes
flatAx) .- ..

S (a) Ax

a+Ax

o Velocity. Suppose s(7) is the position at time ¢ of an
object moving along a straight line.
Its average velocity over a time interval #, to 7, is

s(8) (1

l‘1 -t

Its instantaneous velocity at time 7is W7) = s'(). Its
speed is [W(7)]. Its acceleration is v'(¢).
° Interpretmg a derivative value. Suppose T is
temperature (in °C) as a function of location x (in cm)
along a line. The meaning of, say, 77(8) = 0.31 (°C/
cm) is that, at the location x = 8, small shifts in the
positive x direction yield small increases in temperature
in a ratio of about 0.31 °C per cm shift. Small shifts in
the negative direction yield like decreases in 7.

APPLICATIONS

® Linear approximations at 0.
The following are commonly used linear approxima-
tions valid near x = 0.

sinx =x tan x =x e¥ = l+x

In (1+x) =x (I+0)12 = 14x/2 1/(14x) =1-x
The error in each approximation is no more than M |x2/2,
where M is any bound on |f”’(y)| for |y|<|x], fbeing the
relevant function. E.g., [sin x -x|<.005 for [x{<0.1.

o Newton’s method. To find an approximate root of f{x)
=0, select an appropriate starting point x, and evaluate
Yy = X f(X)/f( )
successively for'n = 0,"1.-.., uniil the values do not
change at the desired premsmn The value on the right
hand side in the above is where the tangent line at

(x,, f(x,)) meets the x-axis.

Newton's Method - Example
f)=x-x-1

x,=1 x=15

o

o Related rates. Suppose two variables, each a function
of ‘time’, are related by an equation. Differentiate both
sides of the equation with respect to time to get a relation
involving the time derivatives—the rates—and the origi-
nal variables. With sufficient data for the variables and
one of the rates, the derivative relation can be solved for
the other rate.

‘Derivatives” continued on next page
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DIFFERENTIATION RULES

e General notes. In the following, assume fand g are

differentiable. Each rule should be viewed as saying

that the function to be differentiated is differentiable

on its domain and that the derivative is as given. For
each, there is also a functional form, e.g., (¢f) =c¢f’,
and a I;iibniz form, e.g., f;(cu) =c %

* Sum. {170)+g001= £ () +5' ()

e Scalar multiple. %[cf(x)] =cf (x)

* Product. Z-{ f(0gW)] = F(0gx) +f(0)g'(x)
e Quotient. %[%]: "()e(x) = F(x)e' (x
® The Chain Rule (for compositions).

&P
Do Q0] =4 flg0) = (g (D
This says that a small change in input to the composi-
tion is scaled by g (x), then by /’(g(x)). In Liebniz
notation, if z=f{y) andy = g(x), and we thereby view
z a function of x, then

% = %%, diyz-being evaluated at y =g(x).

In D notation, D(f og) =[D(f) og]D(g).
o Inverse functions. If /is the inverse of a function g
(and g’ is continuous and nonzero), then
4 =
1169 = ey

To get a specific formula directly, start with y = f(x);
rewrite it g(y) = x; differentiate with respect to x to
get g’(y)y” = 1; write this y’=1/¢ () and put g’(v) in
terms of x, using the relations y = fix) and g(y) = x.

E.g,y=Inx; & =x; &y'=1; y'=1/¢" =1/x.
® Implicit functions. The derivative of a function
defined implicitly by a relation F(x,y) =c may be found
by differentiating the relation with respect to x while treat-
ing y as a function of x wherever it appears in the rela-
tion; and then solving for y” in terms of x and y. The
result is the same as obtained from the formal expression

Py
& RxY)

where y is treated as a constant in the numerator, x
as a constant in the denominator.

DERIVATIVE FORMULAS

® Constants. For any constant ¢, %C =0-

d 1
® Reciprocal function. E;=_7

: : d| 1 1
The chain rule gives — |—|[= ——. r
dx L’(x] Joor! )
d 1=
® Square root. VX =5 77

® Powers. For any real value of n, %Xn =",
valid where x*! is defined. The chain rule gives
_l ’
Lol =n[feo ™ /0.
® Exponentials. An exponential function has deriva-

tive proportional to itself, the ﬁro ortionality factor be-
ing the natural logarithm of the base:

Ly=o, Lo =(nap*
The chain rule gives gx—eﬂ") =/ Of (x)
® Logarithms.

4, | |=1_ 4, | |=_1
dx MY T 5 @ 08 X I T Ina)x
Same rules hold without absolute value, but the do-
main is restricted to (0,°°). The chain rule gives
d _f'
%mlf(x)l‘ oo -
® Hyperbolic functions.

sinh’x =cosh x cosh’x =sinh x

R -
arcsinh’ x m arccosh’ x xm
o Trig functions.
sin’ x = cosx
tan’ x = sec? x
sec’ x = sec x tan x

cos’ x = -sinx
cot” x=-csc? x
csc’ x =-cscx cotx

arcsin’x = = —arccos' x

1
arctan’ x {_ ; 2= - arccot' x

LOCAL FEATURES OF
FUNCTIONS

e Neighborhoods. In the following, “near” a point
means in an open interval containing the point. Such an
open interval 1s often called a neighborhood of the point.
o Continuity. Ifa function is differentiable at a point,
then it is continuous there.

® Critical points. A point c is a critical point of f if /' is
defined near ¢ and either f’(c) = 0 or f”(c) does not exist.
e Local extrema. A local minimum point of f'is a
point ¢ with f(x) 2 f(¢) for x near c. A local maxi-
mum point of fis a point ¢ with f(x) < f(¢) for x near
c. If ¢ is a local extremum point, then it is a critical
point. (This follows from definitions.) Relative ex-
trema are the same as local extrema.

o First Derivative Test. Suppose ¢ is a critical point
of fand f'is continuous at c. Iff”(x) changes sign from
negative to positive as x increases through ¢, then ¢ is
alocal minimum point. If /"(x) changes sign from posi-
tive to negative as x increases through ¢, then ¢ is a
local maximum point. If f'(x) keeps the same sign, then
¢ is not an extremum point.

® Second Derivative Test. Suppose fis differentiable near
a critical pointc. If/”’(¢) > 0, then ¢ is a local minimum
point. If /”’(¢) <0, then c is a local maximum point.

® Inflection points. If the graph of fhas a tangent line
(possibly vertical) at ¢

APPLICATIONS

e Optimization with constraint. Here is an out-
line to approach optimization problems involving
two variables that are somehow related.
1. Visualize the problem and name the variables.
2.Write down the objective function—the one to be
optimized—as a function of two variables.
3. Write down a constraint equation relating the vari-
ables.
4.Use the constraint to rewrite the objective func-
tion in terms of one variable.
5.Analyse the new function of one variable to find
its optimal point(s), and the optimal value.
E.g., to maximize the area of a rectangle with pe-
rimeter being p, we pose the problem as maximiz-
ing A = Iw subject to the constraint 2/ + 2w = p.
The constraint givesw = p/2 - [, whence 4 = l(f/2-
[). The maximum occurs at / = p/4, with A = (p/4)%
A verbal result is clearest: it’s a square.

For %eometric Iz)roblems, volume formulas may be needed:
cylinder: wr2h,  cone: mr2h/3, sphere: 4mr3/3.
® Cubics. A cubic p(x) =ax3+ bx2+ cx+ dhas exactly
one inflection point: (#,k) where & =-b/(3a) and k= p(h).

A normal form is

p() =a(x—hP +m(x—h)+k
where m = bh + c is the slope at the inflection point. If
m anda have opposite signs, the horizontal line through

and f”'(x) changes sign
asx increases through ¢,
thenc, or the graph point
(cf(c)),is called an inflec-
tion point. E.g., x3has a
vertical tangent and in-
flection point at (0,0).
An inflection point for

Inflection Point

occurs with
Steepest tangent

the inflection point meets the graph at two points,each
a distance /7, from the inflection point, and local
extrema occur at points l\]_ =~ (. gtimes that distance.

/is an extremum for {" H

the tangent line is lo-
cally steepest at such a point. The only possible inflec-
tion points are where f(x) = 0 or /”’(x) does not exist.

TRENDS &
GLOBAL FEATURES

« Mean Value Theorem (MVT). If fis continuous on
[a,b] and differentiable on the open interval (a,b), then
there is a point ¢ in (a,b) with

flo=Lo=fa

a
a .

Graphically, some tangent
line between @ and b is par-
allel to the secant line through
(af(a)) and (b,f(b)). The case
withf{a)=fib) =0, whence
(c) = 0, is Rolle’s Theorem.
The proof of the MVT relies |== = b
on the Extreme Value Theorem. |_2

« Increasing and decreasing.

Iff =0 on an interval, then fis constant on that interval.
If >0 on an interval, then f7is strictly increasing on
that interval.

Iff” <0 onan interval, thenfis strictly decreasing on
that interval. (These follow from MVT.)

« Concavity. A graph is said to be concave up [down]
at a point ¢ if the graph lies above [below] the tangent
line near ¢, except at ¢. If /7 > 0 on an interval, then
the graph of f'is concave up on the interval (UP-POSI-
TIVE); alsof” is increasing, and the tangent lines are
turning upward as x increases. If /< 0 on an interval,
then the graph of f'is concave down on the interval
(DOWN-NEGATIVE); also f” is decreasing, and the
tangent lines are turning downward as x increases.

« Extrema on a closed interval. The global, or absolute,
maximum and minimum values of a continuous function ona
closed interval [a,b] (guaranteed to be achieved by the Extreme
Value Theorem) can only occur at critical points or endpoints.

Mean Value
Theorem

INTERPRETATIONS

e Area under a curve. The integral of a nonnegative
function over an interval gives the area under the graph
of the function.

o Average value. The average value of f'over an inter-
val [a,b] may be defined by

average value = y]_—ajah fix)dx.
Often a rough estimate of an integral can be made by
estimating the average value (by inspection of the graph,
say) and multiplying it by the length of the interval.

® Accumulated change. The integral of a rate of change
gives the total chan%e in the original quantity over the
time interval. E.g., if W(#)=s'(¢) represents velocity, then
v(t)At is the approximate displacement occurring in the
time increment 7to 7+ Az Adding the displacements for
all the time increments gives the approximate change
in position over the entire time interval. In the limit of
smal] time increments, one gets the inte-
gral | vt = 5(b)-s5(a) - which is the total displacement.

FUNDAMENTAL THEOREM
OF CALCULUS

® Antiderivatives. An antiderivative of a function f’is
a function F whose derivative is f; F'(x) = f(x) for all x
in some domain. Any two antiderivatives of a function
on an interval differ by a constant. (This follows from
MVT.) E.g., arctan x and -arctan(l/x) are both
antiderivatives of 1/(1+ x?) for x > 0. (They differ by
1Y2.) An antiderivative is also called an indefinite
inte%ral, though the latter term often refers to the entire
family of antiderivatives.

® The Fundamental Theorem. There are two parts:
1) Evaluating integrals. If / is continuous on [a,b],
and F'is any antiderivative of fon that interval, then

j:’ Feo)dx :F(x)[g =F(b) -F().
2)Constructing antiderivatives. If fis continu-
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ous on [a,b], then the function
G =] fwdw

is an antiderivative of f on (a,b): G '(x)=f(x). (The one-
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sided derivatives of G agree with fat the endpoints.)
o Differentiation of integrals.To differentiate a func-

tion such as X+ _[a Sw)dw | view it as a composition
G(x2), with G as above. The chain rule gives
EG(xz) =G (x2) - 2x =2xf(x2).




